
140

 }

 public int y
 {
 get { return _y; }
 set { _y = value; }
 }
 public override string ToString()
 {
 return "This point is (" + x + ", " + y + ") \n";
 }

}

public class Circle : Point
 {
 const double pi=3.14;
 private double _radius;
 public Circle() { }
 public Circle(int X, int Y, double Radius):base(X,Y)
 {
 _radius = Radius;
 }
 public double radius
 {
 get { return _radius; }
 set
 {
 if (value >= 0)
 _radius = value;
 }
 }

 public double Diameter()
 {
 return _radius * 2;
 }

 public double Circumference()
 {
 return 2*pi*_radius;
 }

 public virtual double Area()
 {
 return pi*_radius*_radius;
 }

 public override string ToString()

141

 {
 return "In this circle : " + "\n" +
 " Center = (" + x + ", " + y + ")"+"\n"+
 " Radius = " + radius +"\n"+
 " Circumference= "+ Circumference()+"\n" +
 " Area= "+ Area() +"\n";
 }

}

 private void ButCalculate_Click(object sender, EventArgs e)
 {
 Circle x = new Circle(3, 5, 10);
 MessageBox.Show(x.ToString());

}

6-4- Virtual Methods and Override Methods
When an instance method declaration includes a virtual modifier,

that method is said to be a virtual method. When no virtual modifier is
present, the method is said to be a non- virtual method.

The implementation of a non virtual method is invariant. The
implementation is the same whether the method is invoked on an
instance of the class in which it is declared or an instance of a derived
class. In contrast, the implementation of a virtual method can be
superseded by derived classes. The process of superseding the
implementation of an inherited virtual method is known as overriding
that method.

In a virtual method invocation, the runtime type of the instance for
which that invocation takes place determines the actual method
implementation to invoke. In a non virtual method invocation, the
compile-time type of the instance is the determining factor.

In precise terms, when a method named N is invoked with an
argument list A on an instance with a compile-time type C and a runtime
type R (where R is either C or a class derived from C), the invocation is
processed as follows.

- First, overload resolution is applied to C, N, and A to select a
specific method H from the set of methods declared in and inherited
by C.

- Then, if H is a nonvirtual method, M is invoked.
- Otherwise, H is a virtual method, and the most derived

implementation of H with respect to R is invoked.
For every virtual method declared in or inherited by a class, there

exists a most derived implementation of the method with respect to that
class. The most derived implementation of a virtual method M with
respect to a class R is determined as follows.

- If R contains the introducing virtual declaration of M, then this is
the most derived implementation of M.

- Otherwise, if R contains an override of M, then this is the most
 derived implementation of M.

